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C H A R A C T E R I S T I C  P R O P E R T I E S  OF T H E  S Y S T E M  OF E Q U A T I O N S  

OF A S H E A R  F L O W  W I T H  N O N M O N O T O N I C  V E L O C I T Y  P R O F I L E  

V.  M.  T e s h u k o v  and M. M.  S terkhova  UDC 517.958+532.59 

1. F o r m u l a t i o n  of  t h e  P r o b l e m .  We consider the initial boundary value problem with a free 
boundary 

p ( U T + U U x + V U y ) + p x = O ,  O<~ Y <.H(X,T) ,  

H 

Vx + V y = O ,  
\ J  / x 0 (1.1) 

p(Z, H(X, T), T) = O, V(X, O, T) = O, 

U(X, Y, O) = Uo(X, Y), H(X, O) = Ho(X), 

which describes, in the long-wave theory approximation, the plane-parallel vortex flow of a layer of a 
homogeneous liquid at a depth H = H(X, T) above an even bottom Y = 0 in a gravity field. Here U, 
V are components of the vector of the liquid velocity, p is the pressure, p is the density (p = const), g is the 
acceleration of gravity, and Uo(X, Y), Ho(X) are prescribed functions. 

It was shown in [1] that the problem (1.1) is reduced to the Cauchy problem for the system of integro- 
differential equations 

1 

+uu: :+g/h~:du=O,  h~+(uh)~=O, O<~ A u t  <<. 1, 
Jo (1.2) 

u(x,O,s = Uo(x,s h(x,O,s = Ho(z), 

where u(x,t ,s  = U(x ,~(x , t , s  h(x,t ,~) = (I)~(x,t,~) and (I)(x,t,s results from the solution of the 
problem 

0 

The surfaces )~ -- const so defined are contact surfaces; A -- 0 corresponds to the bottom, )~ = 1 corresponds 
to a free surface. When Uy - 0 (in the long-wave approximation this corresponds to a vortex-free flow) Eqs. 
(1.2) become the well-known equations of shallow water theory which are of the hyperbolic type. The question 
of the type of Eqs. (1.2) arises when considering vortex flows with Uy ~ O. 

In [1, 2] hyperbolicity is defined for a system with operator coefficients, and the conditions of 
hyperbolicity for Eqs. (1.2) are determined for a monotonic velocity profile (Uy ~ 0). Here we obtain the 
conditions of hyperbolicity for Eqs. (1.2) for a nonmonotonic velocity profile under the assumption that Uy 
vanishes at a single point Y.(X,T) ,  0 < Y.(X,T) < H(X,T) .  In this case Uyy(Y.) ~ 0, 

It should be noted that the conditions of hyperbolicity play an important role in the analysis of shear 
flow stability because their violation results in ill-posedness of the Cauchy problem for the system of equations 
of fluid motion. 
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According to [1], the determination of the type of Eqs. (1.2) is reduced to searching for eigenfunctionals 
and eigenvalues k satisfying the equation 

(~o, Af) = k(~o, f). (1.3) 

The operator A is defined by the equality 

1 

A(fl ,  f2) t (A) = (u(A)fl (A) + g f f2 (v) dr, 
0 

h(A)k(Oq + 

Here (~o, f) denotes the action of the functional ~o on the test function f; f = (fx, f2) t is a sufficiently smooth 
function; the index t denotes transposition. 

Since f l  and f2 are independent,  Eq. (1.3) is equivalent to the following: 

(~Pl, (ZZ --  k ) k  ) -~- (~t92, h k )  = O, 

1 

g f f2 dv(~Ol, 1) + (~02, (u - k)f2) = 0. 
0 

If the functional ~ol is known, then the action of the functional ~o2 is given by the formula 

(~2, f )  = -(qol, (u - k)h- l f ) .  

To find the functional ~Ol and eigenvalues k, we solve the equation 

1 

--(~Pl, (U -- k)2h-lf2) + g J f2 dv(~pa, 1) = 0. 
0 

For brevity, the arguments x, t are omitted. 
For Eqs. (1.2) to be hyperbolic, all the eigenvalues k ~ which satisfy Eq. (1.3) are required to be real and 

the set of corresponding eigenfunctionals {~o ~} to be complete, i.e., the equalities (~oa,f) = 0 should involve 
the equality f = 0. When the conditions of hyperbolicity are fulfilled, Eqs. (1.2) can be transformed into the 
equivalent characteristic form: (~o ~, ut + k~u~) = 0, where u = (u, h) t, k a are the eigenvalues corresponding 
to ~o% 

2. T h e  D e r i v a t i o n  of  E i g e n f u n c t i o n s .  
L e m m a  2.1. The eigenvalues ki of a discrete spectrum are specified by the equation 

1 

9 / h(u)(u(v) - ki) -2 du = 1. (2.1) 
0 

direct verification that the eigenfunctionals ~o i = ( ~ { , ~ )  satisfy 
The action of ~pi on an arbitrary smooth function f(f  = (fl ,  f2) t) is 

Proof. This lemma is proved by 
Eq. (1.3) with ki the  roots of Eqs. (2.1). 
given by the formulas: 

1 

k )  = f k - -2 
0 

i =  1,2, 

1 
�9 / 

(qO~, f 2 )  = --  f 2 ( / / ) ( U ( v )  --  ]r  dr/, i = 1 , 2 .  

0 

Equation (2.1) always has two real roots outside of the segment 
generally speaking, it may also have complex roots. 

[minau(x, t, A), max;~u(x, t, A)]; 
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The velocity profile that satisfies the conditions 

u A > 0  for 0 < A < ) q ( x , t ) ,  uA < 0  for Al (x , t )<A<l ,  
u),~(Al(x,t)) r 0, u(0) < u(1). (2.2) 

is considered. 
Let A2(x, t) be a point in [0, 1], where the equality u(A2) = u(1) is achieved. For each point A from 

[A2,A1] we define the function As = As(A,x,t) (As /> A1) given by the equality u(A,x,t) = u(As(A,x,t),x,t). 
In what follows the arguments x, t in the notation of the functions A(x, t), As(z, t) are omitted for brevity. 
For any smooth function r there is a 3rd-degree polynomial in u Q(u, A, As, ~b) meeting the conditions 

Q(A, A, As, r  = r Q(As, A, As, r  = r 

Q~(A,A, As,r = r Q~(As, A, A~, r  = r 

This polynomial can be represented as 

Q(~, A, As,C)= ~(r + r  8(r  r As) 

+(-�88162 + r + ~ (r  r - A~)-I)(~ - �89 + As)) 

+~-(r - r - As)-~(~ - �89 + As)) 2 

+ r - As) -2 - 2(r - r - As)-3)(~ - ~(A + +((r As)) a. 

The polynomial Q(u,A, As,r is constructed in such a way that the difference between the values of 
Q(u,A, As,r and r in the neighborhood of the point A1 (where A ---* As) can be estimated as 
( r  - -  Q(I], A, As, r  = O((t] - -  A1)4). 

We introduce one more 3rd-degree polynomial in u Ql(u, A, As, ~b) given by the formula 

q~(~, A, As, r = ~(~(A)r - ~(As)r - As) 

+�88162 + ~(A~Ir ~-(A + As)) 

- ~-(~(AIr - ~(Aslr - As)-~(~ - ~-(A + As)) 2 

-(~(A)r + ~(As)r - A,)-2(~ - ~(A + A~)) 3, 

where w(A) = uv(A)/h(A). 
Consider the functionals $(A), 3'(A) [4], Plo(A) (A E (0, A2)), Pn(A) (A E (0, A2)), Po(A) (A E (A2, 1)), 

PI(A) (A E (A2, 1)) acting on a smooth test function r according to the following rules: 

(~(A), r = r (~'(A), r  = -r  

1 

fh(~) r - r (P10(A),r 0 (~(~) -~(A))~ d~, A e (0, A~), 

1 

(Pn(A),r  = u(-~) ---u(A)' A E (0, A2), 
0 

)'2 1 
fh(~,) r ,~, + j h(,~)r - q(~, ,A,A~) d~,, A e (A2, ~), (po(A),r = j (-~5= ~ ~ ~ = ~  

0 A 2 
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(PI(/~),r l u ( v )  _ zt()t) 3 t- ~ C ~  _--U()I)) 2 dr, A E (A2,1). 
),2 

L e m m a  2.2.For every eigenvalue k ;~ = u(x,t,A), (A E (0, A2)) there are two eigenfunctionals (qo 11"~ 
and ~p21;~) given by the formulas 

~llX____ (~/(A),w(A)(5(A)), ~o21A = (gP10(A)+ (5(A),-gP11(A)). 

L e m m a  2.3. For every eigenvalue k ;~ = u(x,t ,A) (A E (A2,1)) there are four eigenfunctionals 
( ~ l a  ~p2x, to3x, ~4.~) given by the formulas: 

((~t()~) .at" ~t(~s) ) _1_ 6(~(~) -- (~(~s))()~ -- )~s) -1, (W(~)(~(.~) -~- W()ts)~(.~s))) , ~O lx 

~ = ((r + r - ~)-~ + 2(~(~)- 6(~))(~ - ~)-~, (~(~)~(~) + ~(~)a(~))(~ - A~)-~), 

~#4A = (gPo(~) + (5(X),-gPI(~)). 

Proof is obtained after straightforward substitution of the above eigenfunctionals into Eq. (1.3). 
3. Cond i t ions  of Hyperbo l i c i ty  for Eqs. (1.2). Let us verify that the constructed set of 

eigenfunctionals is complete. We obtain a condition which provides an equality f = (fl, f2) t = 0 as a 
consequence of the relations: 

(~ll)~,f) ~_ 0, (~21A,f) = 0, (~lA,f) _-- 0, (~2). f) ~_ 0, 
(3.1) 

(~3A, f )  = 0, (~4A, f )  ----- 0, (~O 1, f )  --~ 0, ((19 2 , f )  = 0. 

For A E (0, A2) it results from (3.1) that f2 = w - l ( f x ) v .  For A E (A2, 1)it follows from (3.1) that fl(A) = fl(As), 
f2(A) = w-I(A)(fl) ,(A), f2(As) = w-l(As)(fl),,(A,). Using these equalities we obtain the integral equations 
for determination of the function fl:  

1 
_ g [  1 0 ( f l ( u ) - - f l ( A )  

fl()~) dv 0; (3.2) ~ ~(~) ~(~) J 

0 

I 

/ I ~ (k(~) ~ ~ ( ~ )  - k i } d v = O  ( i = 1 , 2 ) .  (3.3) 
0 

It is easy to verify that Eq. (3.2) is fulfilled if fl is replaced by the function fl l  = al(U - kl) -1 -4- cr2(u - k2) -1, 
where al ,  a2 are arbitrary values independent of A. 

We search for a general solution to Eq. (3.2) in the form fl  = fl0 + f n ,  where fl0 satisfies the 
conditions fl0(0) = fl0(A~), fl0(1) = fl0(A1). These conditions can be fulfilled by the proper choice of a~, a2- 
The function ]'10 has the symmetry property fl0(A) = fl0(A,) that follows from the equalities (3.1). 

Integrating by parts and changing variables, we transform Eq. (3.2) into 

?p(u')du'] 
r [(U -- ~ , )  q-g(zt  I - - U , ) ( U  1 -- Zt)-- lwl  1 - - g ( u  0 -- Zt,)(U 0 -- Z t ) - lwo  1 - - 9 ' J  ~7--__7J 

uo 

q-gTP(U'~(U~--) dut ---- --fl0. (3.4) 

uo 

( r  = ( f i o ( u )  - f~o,)(u - u , ) - ~ ) .  No te  t h a t  r = r = 0. Here  u ' ,  u,  a~ are a b b r e v i a t i o n s  for u(x,t,v), 
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u(x, t ,A) ,  w(x , t ,  As); indices 0, 1, * correspond to the values of the functions when A = 0, A = 1, A = A1; 
w(u), w~(u), r  rio(u) are the dependences of the functions w, w~, r fl0 on u(A). 

The function p(u), discontinuous at the point Ul, is given by the formulas 

p(u) = (u - ~ * ) N  for ~, e (u0, ~1), 

The function p(u) has a peculiarity p = O ( l u - u , I ) - l / e  at the point u,.  Indeed, due to the assumptions 
(2.2), (~-~,)  = o ( ( A - ~ I )  z) in the neighborhood of the point ~ = ~1, and then I~,1 -- l u~ h - l l  = O ( l ~ - , h  I) = 
O(]u - u, 1I/~). If we introduce the analytical functions 

x(z)  ( z - ~ , )  x - a  ( u - z ) ~ J '  ~ ~ - z  ' 
0 Uo 

then the integral equation (3.4) is reduced to the following Riemann problem on the plane of a complex 
variable z with a cut along the segment [u0, u,]: 

F+(u)  = F - ( u )  + 2-~z9 - 1 , u E [u0,u,]. (3.5) 

Here the + and - signs relate to the limiting values of the functions as z ~ u from the upper and 
lower half-planes. We search for the solution of the problem in the class of functions vanishing at infinity and 
unbounded at the point u, .  

We extend the boundary condition to the real axis. The function G = X+/X - is assumed to be equal to 
unity at the segments ] -oo,  u(0)], ]u(A1), +oo[. Due to the general theory, the question of the unique solvability 
of the problem (3.5) is reduced to the determination of its index [3]. The Riemann problem considered here 
has coefficients that are discontinuous at the point u, (G(u,  - O) = - 1 ,  G(u,  + 0) = 1). The index of the 
Riemann problem in the specified class of solutions ee is equal to -1 ,  and the Riemann problem has a unique 
solution if X :~ r 0 when z E (uo,u , )  and the equality 

1 X + 
--Aarg ~_  = --3 (3.6) 
7r X 

is true, with A an increment at the segment (u0,u,). Since X(z) has poles at the points u0, ul and zeroes 
at the points kl, k2, the canonical solution of the Riemann problem satisfying the boundary condition and 
having zeroth order everywhere in the finite part of a plane and (-~e) order at infinity is of the form 

x ( ~ )  = (~  - ~ 0 ) ( z  - ~ 1 )  , , 
( z r- k - S ( ;  x t z . 

When ~e = -1 ,  the problem (3.5) has a unique solution if the following condition holds: 

u0 + - 

.t"1o, f (X /X__'- 1 ) ( u -  k l ) ( U -  k2)du 
J (u - uo)(u - uz)x + = 0. (3.7) 

Let us show that the factor of fl0, is not equal to zero. In the class of functions bounded at infinity 
problem (3.5) is undoubtedly uniquely solvable (since its index ee = 0 is equal to zero). It follows from Eq. 
(3.5) that the function F ( z )  = - f lo , / (27rig)  is the solution to the Riemann problem in the class of functions 
bounded at infinity. Then the factor of ./'I0, in Eq. (3.7) is not equal to zero. Indeed, if the indicated factor 
were equal to zero, the Riemann problem (3.5) would also have a solution in the class of functions vanishing 
at infinity, but it would contradict the unique solvability of the problem in the class of functions bounded at 
infinity. Hence, it follows from (3.7) that fl0, = 0. Since the homogeneous Riemann problem has only a trivial 
solution (ee = -1 )  in the class of functions vanishing at infinity, it follows that ~ = 0, and then also fl0 = 0. 
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Thus, it is found that 
f l  = CZl(U - kl) -1 + ~2( u - k2) -1. 

Substituting fl  into Eqs. (3.3) yields 

1 
Oq / h(tt t - kl) -3 dv = O, 

0 

Here we use the relationship 

1 

a2 f h(u I - k2) -3 dv = O. 
o 

(3.8) 

1 1 

j h(u t -  kl)-2(zL t -  k2) -1 dp + f h ( ~ ' -  ]gl)-l(z$ t -  ]g2) -2 dv - 0. 

0 0 

It follows from (3.8) that  cq = ~2 -- 0, and then f l  = 0. As a result we have proved 
T h e o r e m  3.1. The system of equations (1.2) is hyperbolic for the nonmonotonic velocity profile, 

meeting the conditions X + # O, (3.6), and (2.2). 
Note that  for the validity of the sts  it is sufficient, for solving Eqs. (1.2) u = (u, h) t, to have 

the following smoothness: 

u, ut, u~ E C2+a[O, 1], h, ht, hxECl+~[0 ,1]  ( 0 < a < l ) .  

Applying the above eigenfunctionals, it is possible to reduce the system of equations (1.2) to the 
relationships on characteristics. 

Hyperbolicity of the equations allows us to describe the propagation of disturbances in a fluid and to 
find the influence regions of initial and boundary data and the regions of existence and uniqueness of solution 
of initial boundary value problems. 
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